How to start learning Machine learning again

How to start learning Machine learning again

From Sohail Ahmad

Machine Learning is evolving in recent days; thus, it's getting exciting for everyone to learn. However, learning materials are getting outdated. It is, therefore, good to keep updated on the recent trends in machine ...

Support this campaign

Subscribe to follow campaign updates!

More Info

Machine Learning is evolving in recent days; thus, it's getting exciting for everyone to learn. However, learning materials are getting outdated. It is, therefore, good to keep updated on the recent trends in machine learning.

Machine Learning uses statistics and computer science to get the bests results. Machine Learning is a skill that data scientist and the analyst must-have, and everyone who aspire to have refined data prediction and trends. 

Machine Learning is a very rich and dynamic field that changes every day. Therefore learning Machine Learning sets one's goals and keeps at par with the rest of the professional.  As it is seen in most cases, several paid courses use recycled content that is available on the internet.  This article will look at all the recourses that you can use to learn machine learning.

Machine Learning overlaps several fields, such as data science, as it used to handle large sums of data, and they shouldn't be lumped together. Having knowledge of computer sciences greatly helps in Machine Learning as it’s a skill of data science whereby other skills like statistics and mathematics are requirements. Machine Learning isn’t only for those people who specialize in data science.

Examples of machine learning

      Supervised Learning 

      Unsupervised Learning 

      Reinforcement Learning 

In the past, learners would spend several months or years in-class learning mathematics and theory course work on machine earning.  This process is tiresome, and most of them get frustrated and discouraged by time consumed on term papers and textbooks. 

For one to pursue machine learning, doesn’t necessarily needs to have programming skills. However, having a computer science background is a great benefit to a certain degree, in addition to other skills and knowledge. 

.

 Prerequisites

Machine Learning requires a gentle introduction to the basics. You don’t have to be a professional programmer in order to learn machine learning, but it necessary to have basic skill and knowledge involved in Machine Learning

Learning the basics of machine learning, such as knowledge of data manipulation and exploration of certain software such as EXCEL or SQL is very necessary. However, if one doesn't have these skills, Machine Learning can be done using other programming languages such as Python or R that are usually used in Machine Learning algorithms

When you learn these basics, it is therefore easy to learn Machine Learning as you will only apply these concepts from computer science and statistics to data. It is recommended that you can have a little knowledge of statistics and programming

Sponge Mode

In sponge mode, you should get the theory and the knowledge that is required. This offers you a strong foundation for machine learning. Learning these fundamentals is essential for everyone who would like to learn machine learning. There are several reasons as to why you should learn Machine Learning theory.

Always pay attention to the bigger picture.  Whenever a new concept is introduced, you have to understand each and every tool that is used. This requires you to know all the parameters using the data available to come up with a decision tree. This involves a step by step process used to analyze your data, when and when not use algorithms, and the different models that are used.

Always remember everything.

Machine Learning involves teaching computer and mobile devices on how they can analyze data and make predictions or decisions. The computer has to identify and learn the different patterns that they have been programmed to use. Never get stress over the lots of notes nor revising them two to three times. Only read what is available and whatever you need and review the concepts whenever you encounter them.

 Keep on moving, and don't be discouraged.

Some of the concepts are difficult to understand even to the most learned, never dwell on the same topic for long, and grasp whatever is necessary. Whatever you don’t understand at that particular time will be clear as put them in practice. 

Use Videos 

Video is much more effective than textbooks from the experience textbooks should be used as reference tools. They often don't offer commentary that shows key concepts. It is recommended that video lectures and be used in sponge mode

Targeted Practice

Targeted Practice is all about helping you to sharpen your skills. The goal of this step is to put all that you have learned previously into practice for, in the instance, coding. Machine Learning is a very broad field. There are several applications that are applied in nearly all industries.

It's easy to get anxious when you are planning to. There is a lot to learn.  It is very easy to get lost Machine Learning models as you lose sight of the big picture. There are several building blocks that can be used in machine learning, for instance, transforming data into useful transformation. 

 Machine Learning Projects

When you have gone through the prerequisite, basic sponge mode, and that targeted practice, the next step is to get into bigger projects. In this step, the goal is to integrate Machine Learning techniques into practice as well as analyzing the data.

This helps in practicing Machine Learning and putting them into projects. Projects are great staring points since then. There are great recourses in the tutorials. At this stage, you can get an experienced data scientists as a mentor and show you how you can use data exploration and modeling.

 The data scientist can help you get started with simple projects as you advance to more complicated projects as you gain more experience in machine learning. These projects give you valuable information practice as you translate mathematics into code. These skills come n very helpful whenever you need to use do research in academia in as you work.

There are several benefits when you teach Machine Learning as you these sources and include in detail. These sources include information in which some of these articles. There are lots of information and comment that provide more elaborate ways of handling complicates tests using machine learning.

Campaign Wall

Join the Conversation

Sign in with your Facebook account or

Help Sohail raise $100 by making a donation.