Donate to COVID‑19 Pandemic Response and Fight against 5G installation

Support this campaign

Subscribe to follow campaign updates!

More Info


Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease was first identified in December 2019 in Wuhan, the capital of China's Hubei province, and has since spread globally, resulting in the ongoing 2019–20 coronavirus pandemic. Common symptoms include fever, cough, and shortness of breath. Other symptoms may include muscle pain, sputum production, diarrhea, sore throat, loss of smell, and abdominal pain. While the majority of cases result in mild symptoms, some progress to viral pneumonia and multi-organ failure. As of 4 April 2020, more than 1.17 million cases of have been reported in more than two hundred countries and territories, resulting in over 63,800 deaths. More than 237,000 people have recovered.

The virus is mainly spread during close contact, and by small droplets produced when people cough, sneeze, or talk. These small droplets may be produced during breathing but the virus is not generally airborne. People may also catch COVID-19 by touching a contaminated surface and then their face. The virus can survive on surfaces up to 72 hours. It is most contagious during the first 3 days after symptom onset, although spread may be possible before symptoms appear and in later stages of the disease. Time from exposure to onset of symptoms is generally between two and fourteen days, with an average of five days. The standard method of diagnosis is by reverse transcription polymerase chain reaction (rRT-PCR) from a nasopharyngeal swab. The infection can also be diagnosed from a combination of symptoms, risk factors and a chest CT scan showing features of pneumonia.

Recommended measures to prevent infection include frequent hand washingsocial distancing (maintaining physical distance from others, especially from those with symptoms), covering coughs and sneezes with a tissue or inner elbow, and keeping unwashed hands away from the face. The use of masks is recommended for those who suspect they have the virus and their caregivers. Recommendations for mask use by the general public vary, with some authorities recommending against their use, some recommending their use, and others requiring their use. Currently, there is no vaccine or specific antiviral treatment for COVID-19. Management involves treatment of symptomssupportive careisolation, and experimental measures.

The World Health Organization (WHO) declared the 2019–20 coronavirus outbreak a Public Health Emergency of International Concern (PHEIC) on 30 January 2020, and a pandemic on 11 March 2020. Local transmission of the disease has been recorded in many countries across all six WHO regions.

5G is the fifth generation of wireless communications technologies supporting cellular data networks. Large scale adoption began in 2019 and today virtually every telecommunication service provider in the developed world is upgrading its infrastructure to offer 5G functionality. 5G communication requires the use of communications devices (mostly mobile phones) designed to support the technology.

  • The frequency spectrum of 5G is divided into millimeter waves, mid-band, and low-band. Low-band uses a similar frequency range as the predecessor, 4G. 5G millimeter wave is the fastest, with actual speeds often being 1–2 Gbit/s down. Frequencies are above 24 GHz reaching up to 72 GHz which is above the extremely high frequency band's lower boundary. The reach is short, so more cells are required. Millimeter waves have difficulty traversing many walls and windows, so indoor coverage is limited.

    5G mid-band is the most widely deployed, in over 30 networks. Speeds in a 100 MHz wide band are usually 100–400 Mbit/s down. In the lab and occasionally in the field, speeds can go over a gigabit per second. Frequencies deployed are from 2.4 GHz to 4.2 GHz. Sprint and China Mobile are using 2.5 GHz, while others are mostly between 3.3 and 4.2 GHz. Many areas can be covered simply by upgrading existing towers, which lowers the cost. Mid-band networks have better reach, bringing the cost close to the cost of 4G.

    5G low-band offers similar capacity to advanced 4G. In the United StatesT-Mobile and AT&T launched low-band services on the first week of December 2019. T-Mobile CTO Neville Ray warns that speeds on their 600 MHz 5G may be as low as 25 Mbit/s down. AT&T, using 850 MHz, will also usually deliver less than 100 Mbit/s in 2019. The performance will improve, but cannot be significantly greater than robust 4G in the same spectrum.

  • The floating body effect is the effect of dependence of the body potential of a transistor realized by the silicon on insulator (SOI) technology on the history of its biasing and the carrier recombination processes. The transistor's body forms a capacitor against the insulated substrate. The charge accumulates on this capacitor and may cause adverse effects, for example, opening of parasitic transistors in the structure and causing off-state leakages, resulting in higher current consumption and in case of DRAM in loss of information from the memory cells. It also causes the history effect, the dependence of the threshold voltage of the transistor on its previous states. In analog devices, the floating body effect is known as the kink effect.

  • Effect of spaceflight on the human body

    Venturing into the environment of space can have negative effects on the human body.[1] Significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia).[2] Other significant effects include a slowing of cardiovascular system functions, decreased production of red blood cells, balance disorders, eyesight disorders and changes in the immune system.[3] Additional symptoms include fluid redistribution (causing the "moon-face" appearance typical in pictures of astronauts experiencing weightlessness),[4][5] loss of body mass, nasal congestion, sleep disturbance, and excess flatulence.

    The engineering problems associated with leaving Earth and developing space propulsion systems have been examined for over a century, and millions of hours of research have been spent on them. In recent years there has been an increase in research on the issue of how humans can survive and work in space for extended and possibly indefinite periods of time. This question requires input from the physical and biological sciences and has now become the greatest challenge (other than funding) facing human space exploration. A fundamental step in overcoming this challenge is trying to understand the effects and impact of long-term space travel on the human body.

    In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, including a human mission to Mars

    On 12 April 2019, NASA reported medical results, from the Astronaut Twin Study, where one astronaut twin spent a year in space on the International Space Station, while the other twin spent the year on Earth, which demonstrated several long-lasting changes, including those related to alterations in DNA and cognition, when one twin was compared with the other.

  • Red blood cells (RBCs), also referred to as red cells, red blood corpuscles, haematids, erythroid cells or erythrocytes (from Greek erythros for "red" and kytos for "hollow vessel", with -cyte translated as "cell" in modern usage), are the most common type of blood cell and the vertebrate's principal means of delivering oxygen (O) to the body tissues—via blood flow through the circulatory system. RBCs take up oxygen in the lungs, or gills of fish, and release it into tissues while squeezing through the body's capillaries.

    The cytoplasm of erythrocytes is rich in hemoglobin, an iron-containing biomolecule that can bind oxygen and is responsible for the red color of the cells and the blood. The cell membrane is composed of proteins and lipids, and this structure provides properties essential for physiological cell function such as deformability and stability while traversing the circulatory system and specifically the capillary network.

    In humans, mature red blood cells are flexible and oval biconcave disks. They lack a cell nucleus and most organelles, in order to accommodate maximum space for hemoglobin; they can be viewed as sacks of hemoglobin, with a plasma membrane as the sack. Approximately 2.4 million new erythrocytes are produced per second in human adults. The cells develop in the bone marrow and circulate for about 100–120 days in the body before their components are recycled by macrophages. Each circulation takes about 60 seconds (one minute). Approximately 84% of the cells in the human body are red blood cells. Nearly half of the blood's volume (40% to 45%) is red blood cells.

    Packed red blood cells (pRBC) are red blood cells that have been donated, processed, and stored in a blood bank for blood transfusion.

  • A T cell is a type of lymphocyte, which develops in the thymus gland (hence the name) and plays a central role in the immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor on the cell surface. These immune cells originate as precursor cells, derived from bone marrow, and develop into several distinct types of T cells once they have migrated to the thymus gland. T cell differentiation continues even after they have left the thymus.

    Groups of specific, differentiated T cells have an important role in controlling and shaping the immune response by providing a variety of immune-related functions. One of these functions is immune-mediated cell death, and it is carried out by T cells in several ways: CD8+ T cells, also known as "killer cells", are cytotoxic - this means that they are able to directly kill virus-infected cells as well as cancer cells. CD8+ T cells are also able to utilize small signalling proteins, known as cytokines, to recruit other cells when mounting an immune response. A different population of T cells, the CD4+ T cells, function as "helper cells". Unlike CD8+ killer T cells, these CD4+ helper T cells function by indirectly killing cells identified as foreign: they determine if and how other parts of the immune system respond to a specific, perceived threat. Helper T cells also use cytokine signalling to influence regulatory B cells directly, and other cell populations indirectly. Regulatory T cells are yet another distinct population of these cells that provide the critical mechanism of tolerance, whereby immune cells are able to distinguish invading cells from "self" - thus preventing immune cells from inappropriately mounting a response against oneself (which would by definition be an "autoimmune" response). For this reason these regulatory T cells have also been called "suppressor" T cells. These same self-tolerant cells are co-opted by cancer cells to prevent the recognition of, and an immune response against, tumour cells.

  • Memory T cells are a subset of infection- and cancer-fighting T cells (also known as a T lymphocyte) that have previously encountered and responded to their cognate antigen; thus, the term antigen-experienced T cell is often applied. In comparison to naive T cells, which are T cells have not been exposed to antigens yet, memory T cells can reproduce to mount a faster and stronger immune response. Such T cells can recognize foreign invaders, such as bacteria or viruses, as well as cancer cells. A prior infection, an encounter with cancer, or a previous vaccination has made them "experienced". This behaviour is utilized in T lymphocyte proliferation assays, which can reveal exposure to specific antigens.

  • Kindly Donate with your email address to know the real secret behind the Covid-19 and the effect of 5G network to the cells . The world is not only battling with Covid-19 pandemic alone we still have other Pandemic coming we have to get prepared for worst.

  • Follow us on Twitter covid_health

Campaign Wall

Join the Conversation

Sign in with your Facebook account or

Help DONATION raise $100,000 by making a donation.